

Image Processing in Cross-disciplinary Research

Abbas Cheddad Associate Professor in Computer Science & Group Leader (SM IEEE)

Department of Computer Science Blekinge Institute of Technology Sweden

Office: Email: Web: +46 4 55-385863 abbas.cheddad@bth.se http://www.abbascheddad.net

Blekinge Tekniska Högskola (www.bth.se)

Group Members

Big data analytics for image processing

- Image classification
- Image restoration
- Pattern recognition

ArkivDigital

GKN AEROSPACE

Challenges on the OSNs

Image Analysis at the Macro-level

Outline

- IP Risk Prediction of Breast Cancer
- IP Molecular Medicine OPT –
- IP Diabetic Retinopathy
- **IP Handwritten Recognition**

- **IP Aerospace Engineering**
- IP Multimedia Security
- IP Deep Learning-Generative Adversarial Networks (GANs)

IP – Risk Prediction of Breast Cancer

2012 - 2015 Research on statistical image analysis:

Extraction of Area and volumetric density and other features from X-ray images for breast cancer risk prediction

Area and Volumetric Density Measurement

 Approach 1: Combine features and acquisition parameters (processed images) to predict Volpara (corresponding raw images) – training using *Random Forests*.

• Approach 2: Area PD – directly segmenting dense, breast and pectoral muscle regions

CASAM-Vol current supported models

Machine code	Manufacturer	Manufacturer model name	Station name
0	GE MEDICAL SYSTEMS	Senographe Essential VERSION ADS_53.40	GEMAM-KLN1
1	GE MEDICAL SYSTEMS	Senographe Essential VERSION ADS_53.40	GEMAM-SCR2
2	GE MEDICAL SYSTEMS	Senographe Essential VERSION ADS_53.40	HBGMG03
3	GE MEDICAL SYSTEMS	Senographe Essential VERSION ADS_53.10.10	HBGMG03
4	GE MEDICAL SYSTEMS	Senographe Essential VERSION ADS_53.40	LKAMG01
5	GE MEDICAL SYSTEMS	Senograph DS VERSION ADS_53.40	SCR1
6	Sectra Imtec AB	L30	BDCHK1
7	Sectra Imtec AB	L30	SECTRA_MDM_1
8	Sectra Imtec AB	MDM 1.5	BDCHK2
9	Sectra Imtec AB	MDM 1.5	BDCHK3
10	Philips Digital Mammography Sweden AB	L30	BDCHK1
11	Philips Digital Mammography Sweden AB	L30	BDCHK2
12	Philips Digital Mammography Sweden AB	L30	BDCHK3
13	Philips Digital Mammography Sweden AB	L30	BDCHK4
14	Philips Digital Mammography Sweden AB	L30	SECTRA_MDM_1

Linear Regression

 To evaluate association between each of the automated PD measures and genotypes of the SNP rs10995190 in the gene ZNF365 (coded 0/1/2, treated as continuous variable), we fitted linear regression models using PD measures one at a time as outcome variables and carried out Wald tests.

TableEffect estimates for *rs10995190* on automated measures of mammographic density.

Outcome	Estimate (95%CI)	p-value
Volpara (raw)	-0.138(-0.191, -0.085)	4×10 ⁻⁷
CASAM-Area (Processed)	-0.254(-0.353, -0.155)	6×10 ⁻⁷
CASAM-Vol (Processed)	-0.113(-0.158, -0.068)	9×10 ⁻⁷

Point estimates, interval estimates and p-values (Wald tests) are based on estimated coefficients for the SNP in linear regression models with PD measures as outcomes, adjusting for potential confounding variables (n = 1011). doi:10.1371/journal.pone.0110690.t002

Logistic Regression with Cancer Status as Outcome

TableEffect estimates for automated measures of mammographic density on case-control status, n = 1058 (Cases 47, Controls1011).

Estimate (95%CI)	p-value
0.978 (0.300, 1.660)	0.005
0.483 (0.112, 0.862)	0.012
0.926 (0.124, 1.730)	0.023
0.961 (0.239, 1.706)	0.010
0.467 (0.071, 0.879)	0.023
0.813 (-0.041, 1.691)	0.065
	Estimate (95%Cl) 0.978 (0.300, 1.660) 0.483 (0.112, 0.862) 0.926 (0.124, 1.730) 0.961 (0.239, 1.706) 0.467 (0.071, 0.879) 0.813 (-0.041, 1.691)

Point estimates, interval estimates and p-values (Wald tests) are based on estimated coefficients for PD in logistic regression models with case-control status as outcome. (a) with partial adjustment (age and BMI), (b) with full adjustment (age, BMI, menopausal status, HRT use, parity and age at first birth). doi:10.1371/journal.pone.0110690.t004

IP- Molecular Medicine – OPT –

2010 - 2012 Research on 3D visualization of B-cell mass in molecular medicine: *Correction of Optical Distortions in OPT Scanners*

OPT Scanner

- Small animal organ is mounted manually on the rotating motor
- Submerge it into a cuvette filled with BABB clearing solution
- Sample is not precisely mounted around AoR
- Scan post-alignment correction (scattering, depth of focus)

OPT Scan Optimization

2mm

Abbas Cheddad, Christoffer Svensson, James Sharpe, Fredrik Georgsson and Ulf Ahlgren,(2012), "Image Processing Assisted Algorithms for Optical Projection Tomography", *IEEE Transactions on Medical Imaging*, Volume: 31 Issue:1, pp:1-15.

3D volume rendering of a mouse gastro intestinal tract

© Dr. Abbas Cheddad www.abbascheddad.net Users of our Enhanced Aquisition Tools for Optical Projection Tomography

Complex of Biomedical Institutes at Krc Prague, Czech Republic

MRC Institute of Genetics & Molecular Medicine MRC HUMAN GENETICS UNIT

UNIVERSITY OF OULU

Imperial College London

22/10/2020

ISPR2020

IP- Diabetic Retinopathy

Wu Qian and Abbas Cheddad, "Segmentation-based Deep Learning Fundus Image Analysis," in 9th International Conference on Image Processing Theory, Tools and Applications (IPTA 2019). Nov 6-9, 2019, Istanbul, Turkey.

Ophthalmologist @ Tecnológico de Monterrey, Mexico

IP- Handwritten Recognition

SGP (Shape Growth Pattern)

DTBIM: <u>D</u>elaunay <u>t</u>riangulation-based <u>b</u>inary <u>i</u>mage <u>m</u>orphing

Shape Growth Pattern (SGP)

- Data sets with limited number of samples will deteriorate the success recognition rate in computer vision applications.
- A pre-processing stage is proposed to augment the bank of features that one can retrieve from binary images to help improve the accuracy rate of pattern recognition algorithms.
- By having successive dilations applied to a given shape, one can capture a new dimension of its vital characteristics

Morphological Dilation

DELAUNAY TRIANGULATION BASED BINARY IMAGE MORPHING (DTBIM)

Cheddad A. "Structure Preserving Binary Image Morphing using Delaunay Triangulation." Pattern Recognition Letters, (2017) 85, pp. 8-14. Elsevier.

Dilation with structuring element 1

22/10/2020

Machine Learning Algorithms

Abbas Cheddad, Huseyin Kusetogullari and Hakan Grahn, (2017). "Object Recognition using Shape Growth Pattern," 10th International Symposium on Image and Signal Processing and Analysis (ISPA 2017). 18-20th September 2017, pp.47-52, Ljubljana, Slovenia.

IP- Aerospace Engineering

GKN Aerospace AB

- ML Models to Support Design Space
 Exploration
- Computer Vision Welding Control

GKN Aerospace, Trollhättan, Sweden

IP- Multimedia Security

4G networks/ computer network / cloud computing

Communication-theoretical view of a generic embedding process: *c* denotes cover file (e.g., image), *M* denotes the data to hide.

We often see images that are of such good quality we don't consider whether the picture is reality or if it was computer generated. Take our Fake or Foto challenge and see if you can tell the difference between our real photos and those which are computer generated.

DEMO

https://area.autodesk.com/fakeorfoto/

ISPR 2020

22/10/2020

IP- Deep Learning-Generative Adversarial Networks (GANs)

Style GAN generator adapting to the leaf dataset after around 87 ticks with a training time of 192 GPU hours+ and minibatch size of 8

IP-Free Data sets

• Mini-DDSM: Al-based age estimation from X-Rays

C.D. Lekamlage, F. Afzal, E. Westerberg and A. Cheddad, "Mini-DDSM: Mammography-based Automatic Age Estimation," in 3rd International Conference on Digital Medicine and Image Processing (DMIP 2020), Kyoto, Japan, November 06-09, 2020.

ARDIS: Handwritten Digits

Huseyin Kusetogullari, Amir Yavaria bdi, Abbas Cheddad, Håkan Grahn and Johan Hall, "ARDIS: A Swedish Historical Handwritten Digit Dataset," Neural Computing and Applications, 32(21)16505-16518, 2020. Springer.

• SHIBR: Swedish Historical Birth Records

Abbas Cheddad, Hüseyin Kusetogullari, Mustapha Aouache, Agrin Hilmkil, Lena Sundin, Amir Yavariabdi, Johan Hall, "SHIBR-The Swedish Historical Birth Records: A Semi-Annotated Dataset", under review. (15,000 high-resolution color images of the era between 1800 and 1840)

http://abbascheddad.net/Coda.html

Thank you!

Question?