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Challenges on the OSNs

® the ple image shar
6 billion images - 1 billion images
| served daily

mﬂ be 3.5 trillion facebook

100 hours uploaded
per minute phOtOgra Phs 70 billion images

m Almost 90% of web traffic is visual!




Image Analysis at the Macro-level
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Outline

IP — Risk Prediction of Breast Cancer

IP — Molecular Medicine — OPT -

IP - Diabetic Retinopathy
IP - Handwritten Recognition

IP — Aerospace Engineering
IP - Multimedia Security
IP — Deep Learning-Generative Adversarial Networks (GANs)
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IP — Risk Prediction of Breast Cancer

Karolinska
Institutet

" 2l Medical |
_Qﬁﬂ‘ﬁis L \Physics

2012 - 2015 Research on statistical image analysis:

Extraction of Area and volumetric density and other features from X-ray
images for breast cancer risk prediction
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Area and Volumetric Density Measurement

e Approach 1: Combine features and
acquisition parameters (processed images)
to predict Volpara (corresponding raw
images) — training using Random Forests.

* Approach 2: Area PD — directly segmenting
dense, breast and pectoral muscle regions

22/10/2020 ISPR2020
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CASAM-Vol current supported models

Machine Manufacturer Manufacturer model name Station name

code

0 GE MEDICAL SYSTEMS Senographe Essential VERSION ADS_53.40 GEMAM-KLN1

1 GE MEDICAL SYSTEMS Senographe Essential VERSION ADS_53.40 GEMAM-SCR2

2 GE MEDICAL SYSTEMS Senographe Essential VERSION ADS_53.40 HBGMGO03

3 GE MEDICAL SYSTEMS Senographe Essential VERSION HBGMGO03

ADS_53.10.10

4 GE MEDICAL SYSTEMS Senographe Essential VERSION ADS_53.40 LKAMGO1

5 GE MEDICAL SYSTEMS Senograph DS VERSION ADS_53.40 SCR1

6 Sectra Imtec AB L30 BDCHK1

7 Sectra Imtec AB L30 SECTRA_MDM 1

8 Sectra Imtec AB MDM 1.5 BDCHK2

9 Sectra Imtec AB MDM 1.5 BDCHK3

10 Philips Digital Mammography Sweden AB  L30 BDCHK1

11 Philips Digital Mammography Sweden AB  L30 BDCHK2

12 Philips Digital Mammography Sweden AB  L30 BDCHK3

13 Philips Digital Mammography Sweden AB  L30 BDCHK4

14 Philips Digital Mammography Sweden AB  L30 SECTRA_MDM_1
22/10/2020 ISPR2020



Linear Regression

* To evaluate association between each of the automated PD measures and genotypes of
the SNP rs10995190 in the gene ZNF365 (coded 0/1/2, treated as continuous variable),
we fitted linear regression models using PD measures one at a time as outcome variables
and carried out Wald tests.

Table Effect estimates for rs70995790 on automated measures of mammographic density.

Outcome Estimate (95%CIl) p-value
Volpara (raw) -0.138(-0.191, —0.085) 4x10 7
CASAM-Area (Processed) -0.254(-0.353, -0.155) 6x10 7
CASAM-Vol (Processed) -0.113(-0.158, -0.068) 9x10~ 7

Point estimates, interval estimates and p-values (Wald tests) are based on estimated coefficients for the SNP in linear regression models with PD measures as outcomes,
adjusting for potential confounding variables (n=1011).
doi:10.1371/journal.pone.0110690.t002
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Logistic Regression with Cancer Status as Qutcome

Table Effect estimates for automated measures of mammographic density on case-control status, n=1058 (Cases 47, Controls

1011).

Covariate Estimate (95%¢ClI) p-value
(a)

Volpara(raw) 0.978 (0.300, 1.660) 0.005
CASAM-Area (Processed) 0.483 (0.112, 0.862) 0.012
CASAM-Vol (Processed) 0.926 (0.124, 1.730) 0.023
(b)

Volpara(raw) 0.961 (0.239, 1.706) 0.010
CASAM-Area (Processed) 0.467 (0.071, 0.879) 0.023
CASAM-Vol (Processed) 0.813 (-0.041, 1.691) 0.065

Point estimates, interval estimates and p-values (Wald tests) are based on estimated coefficients for PD in logistic regression models with case-control status as
outcome. (a) with partial adjustment (age and BMI), (b) with full adjustment (age, BMI, menopausal status, HRT use, parity and age at first birth).

doi:10.1371/journal.pone.0110690.t004

22/10/2020

ISPR2020

11



IP- Molecular Medicine — OPT -

P UMEA

444

& UNIVERSITET

2010 - 2012 Research on 3D visualization of B-cell mass
in molecular medicine: Correction of Optical Distortions in
OPT Scanners
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OPT Scanner

* Small animal organ is mounted manually on the
rotating motor

 Submerge it into a cuvette filled with BABB clearing
solution

e Sample is not precisely mounted around AoR

e Scan post-alighnment correction (scattering, depth
of focus)
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OPT Scan Optimization
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Abbas Cheddad, Christoffer Svensson, James Sharpe, Fredrik Georgsson and Ulf
Ahlgren,(2012),“Image Processing Assisted Algorithms for Optical Projection Tomography”,
IEEE Transactions on Medical Imaging, Volume: 31 Issue:1, pp:1-15.
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3D volume rendering of a mouse gastro intestinal tract g
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Users of our Enhanced Aquisition Tools
for Optical Projection Tomography

Complex of Biomedical Institutes at Krc Prague, Czech Republic

MONASH
University

novo nordisk

%

9 THE UNIVERSITY TY
N: of EDINBURGH UNIVERSI Imperial College
OF OULU London

MRC HUMAN GENETICS UNIT
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e e e
Wu Qian and Abbas Cheddad, "Segmentation-based Deep Learning
IP- Diabetic Retinopathy

Fundus Image Analysis," in 9t" International Conference on Image

Processing Theory, Tools and Applications (IPTA 2019). Nov 6-9, 2019,
Istanbul, Turkey.

{Original Fundus Image)

Pre-processing
= Re-sampling
* Noise- Removal
+ Filtering

OD (Optic Disc Extraction)

BV(Blood Vessels Extraction) OR (Other Region Extraction)
Tl i || LK
CNN Trained #n-del CN—N TriITI:IEd' i'ﬂ';)del CNN-Traif-méd ﬁ;del

Retinopathy Classification Retinopathy Classification

Retinopathy Classification
or

ar

Outcome
Which of the 3 regions has
more predictive power?

22/10/2020 Ophthalmologist @ Tecnoldgico de Monterrey, Mexico 17



IP- Handwritten Recognition

SGP (Shape Growth Pattern)

DTBIM: Delaunay triangulation-based binary image morphing



Shape Growth Pattern (SGP)

* Data sets with limited number of samples will deteriorate the success recognition rate in
computer vision applications.

* A pre-processing stage is proposed to augment the bank of features that one can retrieve from
binary images to help improve the accuracy rate of pattern recognition algorithms.

* By having successive dilations applied to a given shape, one can capture a new dimension of its

A

vital characteristics

b




Morphological Dilation

DELAUNAY TRIANGULATION BASED BINARY IMAGE MORPHING (DTBIM)

Shape Representation

i Y Y
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Cheddad A. “Structure Preserving Binary Image Morphing using Delaunay Triangulation.” Pattern Recognition Letters, (2017) 85, pp.
8-14. Elsevier.

20



Original binary image Dilation with structuring element 1
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Dilation with structuring element 2
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Machine Learning Algorithms
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Abbas Cheddad, Huseyin IZusétbguIIari and Hakan Graihn, (2‘0i7)A. "Object Recdg‘ni’fian using S.ha‘pé Growth Pa"ctefh,'f 10th International Symposium on
Image and Signal Processing and Analysis (ISPA 2017). 18-20th September 2017, pp.47-52, Ljubljana, Slovenia.



IP- Aerospace Engineering

‘: I { \ .‘_‘—. = [
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GKN Aerospace AB

* ML Models to Support Design Space
Exploration

e Computer Vision Welding Control
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IP- Multimedia Security

4G networks/ computer network / cloud computing

Coding Phase

Cover Image (C)

- © g C.M)

B Y )

File to Hide (M) Key (K)

Decoding Phase
P ——

A\
Communication C | A
Channel Attack 9.(%) —>M L] _

e ! Recovered File
Transmission

Phase Key (K)

Communication-theoretical view of a generic embedding process: C denotes
cover file (e.g., image), Mdenotes the data to hide.
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We often see images that are of such good quality we don't consider whether the picture is reality or if it was
computer generated. Take our Fake or Foto challenge and see if you can tell the difference between our real
photos and those which are computer generated.

DEMO

https://area.autodesk.com/fakeorfoto/ 22/10/2020
27



IP- Deep Learning-Generative Adversarial Networks (GANS)

Style GAN generator adapting to the leaf dataset after around 87 ticks with a training time
of 192 GPU hours+ and minibatch size of 8

10/22/2020 28



|P- Free Data sets

* Mini-DDSM: Al-based age estimation from X-Rays

C.D. Lekamlage, F. Afzal, E. Westerberg and A. Cheddad, "Mini-DDSM: Mammography-based Automatic Age Estimation," in 3™ International Conference on
Digital Medicine and Image Processing (DMIP 2020), Kyoto, Japan, November 06-09, 2020.

* ARDIS: Handwritten Digits

Huseyin Kusetogullari, Amir Yavaria bdi, Abbas Cheddad, Hakan Grahn and Johan Hall, “ARDIS: A Swedish Historical Handwritten Digit Dataset,” Neural
Computing and Applications, 32(21)16505-16518, 2020. Springer.

 SHIBR: Swedish Historical Birth Records

Abbas Cheddad, Hiseyin Kusetogullari, Mustapha Aouache, Agrin Hilmkil, Lena Sundin, Amir Yavariabdi, Johan Hall, “SHIBR-The Swedish Historical Birth
Records: A Semi-Annotated Dataset”, under review. (15,000 high-resolution color images of the era between 1800 and 1840)

http://abbascheddad.net/Coda.html
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